Implications of the Worsening
GCR Radiation Environment

N. A. Schwadron
University of New Hampshire




©
2
U

at~ 100 MeV

 GCRs from
the Galaxy
and Beyond

o
I3
=)

'
>
®

14

2
E
2]
0

(&)

2

©

8
w

O
-
£
[

T
o

£

L
o
-

L
.
©
©
L

w

« SEPS from
Flares and
CMEs

SOLAR FLARE




QAGU

Space Weather

RESEARCH ARTICLE

pecial Section:
The Crater Special Issue o
Space Weather: Building

the Observational Founda-
tion to Deduce Biological
Effects of Space Radiatiop

Key Points:

«+ GCR radiation is increasingly
hazardous

- Radiation limited duration for
missions in deep space

- Timing during solar cycle of missions
remains a critical factor

Correspondence to:
N. A. Schwadron,
n.schwadron@unh.edu

Citation:

Schwadron, N. A, et al. (2014), Does
the worsening galactic cosmic radi-
ation environment observed by
CRaTER preclude future manned deep
space exploration?, Space Weather,

11, doi:10.1002/2014SW001084.

Received 30 MAY 2014

Does the worsening galactic cosmic radiation environment
observed by CRaTER preclude future manned deep
space exploration?

N. A. Schwadron’, J. B. Blake?, A. W. Case3, C. J. Joyce', J. Kasper®*, J. Mazur?, N. Petro®, M. Quinn',
J. A.Porter®, C. W. Smith’, S. Smith’, H. E. Spence’, L. W. Townsend®, R. Turner’,
J. K. Wilson’, and C. Zeitlin®

TSpace Science Center, University of New Hampshire, Durham, New Hampshire, USA, 2The Aerospace Corporation,

El Segundo, California, USA, 3High Energy Astrophysics Division, Harvard-Smithsonian Center for Astrophysics,
Cambridge, Massachusetts, USA, *Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann
Arbor, Michigan, USA, 5Goddard Space Flight Center, Greenbelt, Maryland, USA, 6Department of Nuclear Engineering,
University of Tennessee, Knoxville, Knoxville, Tennessee, USA, 7Analytic Services Inc., Arlington, Virginia, USA, 8Southwest
Research Institute, Earth Oceans and Space Science, University of New Hampshire, Durham, New Hampshire, USA

Abstract The Sun and its solar wind are currently exhibiting extremely low densities and magnetic field
strengths, representing states that have never been observed during the space age. The highly abnormal
solar activity between cycles 23 and 24 has caused the longest solar minimum in over 80 years and
continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar
activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively
small solar energetic particle events. We use observations from the Cosmic Ray Telescope for the Effects

of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter to examine the implications of these highly
unusual solar conditions for human space exploration. We show that while these conditions are not a show
stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation
remains a significant and worsening factor that limits mission durations. While solar energetic particle
events in cycle 24 present some hazard, the accumulated doses for astronauts behind 10 g/cm? shielding
are well below current dose limits. Galactic cosmic radiation presents a more significant challenge: the time
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Long-term Record of Magnetic Field & SSN
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Continued Decay of Magnetic Flux in the
Dalton-like Minimum
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CRaTER Instrument Operation

Human Tissue Equivalent Plastic
Cosmic Ray
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Quick CRaTER Overview
Measures > 12 MeV/nuc particles |m-:ep-smcs<zsmm)sms r
6 detectors (D1-D6) with Tissue Equivalent s o

Plastic (TEP) between pairs of detectors

— Thick and thin detectors with different gains
allow a large range of Linear Energy Transfer
(LET) to be sampled EQU'?{/R(E)JT'S;EAE.HK;

— TEP mimics absorption of energy by human
tissue as radiation passed through telescope

Senses particles from zenith and nadir directions |G-

Di-1nn

Any energy deposit in any detector triggers an
‘event’, in which all energy deposits from all

detectors are recorded ASTERERSsUE
e EQUIVALENT PLASTIC
Data products are in terms of LET, the amount of

energy deposited per path-length (AE/Ax) as a

particle transits through detector DS - 149 um
D6 - 1 mm

' LUNAR (NADIR) SHIELD




Slab Turbulence Model for Modulation

of Galactic Cosmic Rays

Modulation Potential —2006-2013
characterizes evolution : Feb-Aug 2013

of GCRs fluxes (protons . 16811 +1a76x Re0p1an
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log (P/<V>)
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SCHWADRON ET AL., JGR, 2012
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Details about the Modeling

* GCR fluxes modeled using slab-turbulence +
force-free model

— Similar model as Badhwar O’Neill, however

modulation potential scaled differently based on
observations

e Utilize a three-layer version of HZETRN 2005
and HZETRN 2010 for modeling doses, dose-
equivalents, and effective dose



e Longer-term
trend deduced
from observed
Heliospheric
Magnetic field

e Continues
trend observed

by ACE and
CRaTER
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3% Risk for Exposure Induced Death

Age

3% REID
Male
E (cSv)

3% REID
Female
E (cSv)

Managing Space Radiation Risk in the New Era of Space Exploration
Committee on the Evaluation of Radiation Shielding for Space
Exploration, National Research Council 2008

Note: E. Semones will present an
updated approach to risk



Implications of the Changing Space
Weather Environment

30-yr old male, Al 10 g/cm
* HZETRN used 30-yr old female, Al 10 g/cm

to derive 30-yr old male, Al 20 g/cm
30-yr old female, Al 20 g/cm
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Dose Rate (cGy/day)

CRaTER — the complete record

CRaTER 2077 day combined detectors dose rate data
from: 2009-06-26 DOY:177
through: 2015-03-03 DOY:062
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PREDICCS Data Showing Low Probability of
SEP events in cycle 23-24

* PREDICCS - 10 g/cm Al shleldlng
Predictions of :
radiation from
RE|eASE,
EMMREM, and
Data
Incorporating
CRaTER, COSTEP,
and other SEP
measurements
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Comparison of Total Radiation Dose
I]M Equivalent measured by RAD to modeled
clalu Historic SPE Events

Contribution of SPEs to Total Dose Eq. (mSv)

(behind 5 g/cm? Al shielding)

No significant
SPEs to date

RAD Historical SPE
Measurements Events (Modeled)
(to date) i
= | I

RAD RAD RAD Feb July Nov Aug Oct
Cruise Cruise Mars 1956 1959 1960 1972 1989
GCR (6 SPEs SPEs SPE SPE SPE SPE SPE
mo) (total)

*SPE Dose Equivalent
values modeled behind 5
g/cm2 Aluminum by M.-H.
Kim, F. Cucinotta, et al.
(AGU, 2012).

RAD cruise measurements
from Jan-July 2012.

Nov. 60 SPE includes
contributions from 2
events.

Oct. 89 SPE includes
contributions from 5
events over 1 month.




Approach, Assumptions

* Direct observations critical for validating models!!!

* GCR fluxes modeled using slab-turbulence + force-
free model

— Modulation potential scaled with observed magnetic field
strength

— Dose-rate validated with ACE and CRaTER

* Three-layer version of HZETRN 2005 and HZETRN
2010 for modeling doses, dose-equivalents, and
effective dose

— LET spectra from HZETRN validated with CRaTER
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Implications of the Worsenmg GCR Radiation
Environment

* Direct observations (e.g., from LRO/CRaTER and MSL/Rad) critical!
* Deepest Solar Minimum and Weakest Maximum more than 80 years

— Increased GCR radiation intensity, particularly in solar minima
— Reduced allowable time in deep space for astronauts
— Lower probability of SEP events
 Need Improved Understanding/Predictability of SEPs
— Probability of Extreme Events
— Resolve physics and predictability of extreme events

: Enabling Exploration
Exploration & & Emerging

Discovery







Connecting Events Through the Heliosphere

Power of Distributed Observers: Broad Longitudinal extent of SEP events has proved very useful for predicting
SEP spectra and radiation doses at different locations in the inner heliosphere. Figures below show two recent
papers by which SEP time profiles, onset, and radiation estimates were successfully predicted at Mars (Odyssey)
and Ulysses located at 1.44 AU and 4.91 AU, respectively. 1 AU measurement from ACE, SoHO, and GOES

Mars at 1.44 AU
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SEP Events During 2012: Indicators of Larger
SEP Events in the New Cycle (24)

Jan..2319., 2012 Event

Shown here are the major SEP events of 2012 and
the comparisons between CRaTER observations
(blue) and prediccs predictions (red and green).
Agreement reveals overall accuracy of models,
while deviations likely reveal heavy ion
contributions to dose observed by CRaTER
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an 23 2012 Event
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* Galactic Cosmic
Ray Record from
Bel0 in Ice Core
(product of
spallation)
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* Do recent solar
changes suggest
larger changes in
storer

Heliomagnetic field (nT)

1800 1900 2000
Year

McCracken and Beer, 2007




Halloween 2003 Storms
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